
was p a s s e d  t h e  s p e c i f i c  conduct ivi ty  increased  a g a i n  with 
increas ing  hydrogen ion concentrat ion.  
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Solubility 

Aqueous 

of Acrylonitrile in 

Bases and Alkali Salts 

ELIAS KLEIN, J.  W .  WEAVER, AND BEVERLY G. WESRE 
Southern Regional Research Laboratory, New Orleans, La. 

During  a s tudy of t h e  react ion in  which cot ton c e l l u l o s e  
w a s  cyanoethyla ted  with acryloni t r i le  us ing  aqueous  a lka l i  
b a s e s  a s  c a t a l y s t s ,  t h e  so lubi l i ty  of acryloni t r i le  i n  
aqueous  s y s t e m s  w a s  required. S i n c e  the  liquid p h a s e  
a s s o c i a t e d  most int imately with t h e  cotton c e l l u l o s e  during 
t h e  reaction i s  a di lute  aqueous  solut ion of sodium hydrox- 
i d e  or other b a s e ,  t h e  solubi l i ty  of t h e  acryloni t r i le  i n  t h i s  
p h a s e  w a s  bel ieved t o  b e  a determining factor in both the  
ra te  of the  react ion and t h e  ex ten t  of cyanoethylat ion a t  
equilibrium. T h e  solubi l i ty  of acryloni t r i le  in water  h a s  
been reported for var ious temperatures  ( I ) ,  but no solubi l i ty  
da ta  for acryloni t r i le  in  var ious  a lka l i  and  s a l i n e  so lu t ions  
could b e  found. 

MATERIALS USED 

T h e  acryloni t r i le  w a s  of commercial grade, containing 
0.8% of water. In order t o  fac i l i t a te  reading of t h e  in te r face  
with aqueous  l a y e r s  t h e  acryloni t r i le  w a s  colored with 
0.005% Cell i ton F a s t  Red  GGA Ex.  Conc. (Pr. 236). (Pr. 
236  refers  to  t h e  prototype dye  number l i s t e d  in t h e  AATCC 
Yearbook for 1955.) All a lka l i  hydroxides  and s a l t s  were 
of reagent  grade,  except  Naxonate  G ,  a commercially avai l -  
a b l e  mixture of xylene su l fona tes .  

PROCEDURE 
B e c a u s e  acryloni t r i le  r e a c t s  with water  in  the  presence  

cf b a s e s ,  i t  w a s  n e c e s s a r y  to  use a solubi l i ty  determination 
procedure not b a s e d  on equilibrium measurements .  T h e  
measurements  were carr ied out  a t  2 5 ”  i 1 C. in  a n  a i r  
bath. T h e  techniques  employed a r e  essent ia l ly  t h o s e  
reported by Booth and  Everson  (2 )  in  their  s tudy of hydro- 
t ropic  s a l t s .  In t h e  procedure adopted, 45  m l .  of var ious  con- 
cent ra t ions  of a lka l i  b a s e s  were  weighed into s toppered,  
graduated sulfonat ion bot t les  (ASTM D 875-46T); a m e a s -  

ured volume of acryloni t r i le  w a s  then added rapidly, and 
t h e  b o t t l e s  were s e a l e d  and tumbled end over end. Thir ty  
minutes  a f te r  t h e  addi t ion of acryloni t r i le  t h e  tumbling w a s  
s topped and t h e  volume remaining w a s  read on t h e  gradu- 
a ted  s c a l e  of t h e  bottle. Thereaf ter  readings were taken  
every 15 minutes  unt i l  t h e  residual  acryloni t r i le  w a s  less 
than 1.0 ml. 

T h e  change  in  the  volume of acryloni t r i le  w a s  d u e  to  
two causes .  T h e  f i r s t ,  a rapid change  complete  in less 
than 30 minutes ,  w a s  due  to t h e  solut ion of t h e  acryloni t r i le  
in t h e  aqueous  phase .  T h e  second,  and  s lower change,  w a s  
due to t h e  hydration of acryloni t r i le  to  e thylene  cyanohydrin. 
A s  t h e  aqueous  p h a s e  w a s  sa tura ted  with respec t  to  acrylo- 
ni t r i le  during t h e  en t i re  measurement period, and  the  b a s e  
concentrat ion remained e s s e n t i a l l y  unchanged, the  ra te  of 
acryloni t r i le  hydration w a s  evident ly  zero  order. A plot  of 
t h e  volume of acryloni t r i le  remaining vs. t ime w a s  found to  
b e  linear. Extrapolat ion of t h i s  plot t o  zero t ime permitted 
a correct ion to  b e  made for t h e  l o s s  of acryloni t r i le  due  to  
react ion,  and yielded t h e  volume of acryloni t r i le  d i sso lved  
in  t h e  aqueous  phase.  Use of t h e  densi ty  of t h e  acryloni- 
t r i l e  and t h e  known weight of water  in  the  f lask al lowed 
calculat ion of t h e  molality of acryloni t r i le  in  t h e  aqueous  
phase.  

When both a lka l i  b a s e s  and s a l t s  were present  simul- 
taneously,  t h e  s a m e  procedure w a s  followed. T h e  aqueous  
b a s e  w a s  weighed into t h e  f lasks ,  and  weights  of t h e  s a l t  
ca lcu la ted  t o  give a cons tan t  molality of s a l t  solut ion were  
added. 

When t h e  solubi l i ty  of acryloni t r i le  w a s  determined i n  
s a l t  so lu t ions  alone,  t h e  previous method w a s  not neces-  
sary. Weighed amounts  of s a l t  so lu t ions  were p laced  in  t h e  
f l a s k s  and increments  of acryloni t r i le  were added unt i l  a 
second p h a s e  pers is ted.  T h e  so lu t ions  were tumbled for 
30 minutes  between addi t ions  of acrylonitrile. 
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Figure 1. Solubil i ty of  acrylonitr i le in aqueous sodium 
hydroxide, aqueous sodium hydroxide and sodium 

benzoate (1.5 molal), and aqueous sodium 
hydroxide and sodium iodide (2.0 molal) 

a t  2 5 O  c. 

T h e  determinat ion of t h e  ternary solubi l i ty  diagram of 
sodium iodide, water, and  acryloni t r i le  required a combina- 
t ion of methods. P h a s e  boundary AC (Figure 5) w a s  deter- 
mined by weighing sodium iodide  so lu t ions  in to  t h e  sulfona-  
tion b o t t l e s  a n d  adding  increments  of acryloni t r i le  unt i l  t h e  
second p h a s e  p e r s i s t e d  a f te r  tumbling. P h a s e  boundary DE 
w a s  determined by weighing acryloni t r i le  into graduated oi l  

0 I O  20 30 40 
S4LT CONCENTR4TION,WT. X 

Figure 2. Solubil i ty of  acrylonitr i le in  various concentrations 
of sodium chloride, sodium iodide, sodium benzoate, 

and sodium xylene sulfanates a t  2 5 O  C. 

centr i fuge t u b e s  and  adding  aqueous  sodium iodide solu- 
t i o n s  unt i l  a n  aqueous  layer  separated.  T h e  refract ive 
i n d i c e s  of a l l  t h e  s a t u r a t e d  so lu t ions  were determined with 
a n  Abbk refractometer; t h e s e  da ta  were la te r  u s e d  for e s t a b -  
l i sh ing  t h e  direct ion of t h e  t i e  l ines .  P o i n t  F ,  represent ing 
t h e  solubi l i ty  of sodium iodide  in  t h e  acryloni t r i le ,  w a s  
determined us ing  t h e  method of Vaughn and Nutting ( 4 ) .  
T h e  point  is not q u i t e  on t h e  sodium iodide-acryloni t r i le  
b a s e  l ine ,  b e c a u s e  of t h e  p r e s e n c e  of 0.8% of water  in t h e  
acryloni t r i le ,  and  a t r a c e  of water  in the  sodium iodide. 

RESULTS AND DISCUSSION 

Figure  1 s h o w s  t h e  so lubi l i ty  of acryloni t r i le ,  e x p r e s s e d  
a s  moles  of acryloni t r i le  per  1000 grams of water ,  a s  a 
funct ion of t h e  weight  per  cent  of sodium hydroxide in  t h e  
solut ion.  If t h e  solubi l i ty  of acryloni t r i le  i s  plot ted a g a i n s t  
the  s q u a r e  root of t h e  sodium hydroxide molal i ty ,  t h e  rela- 
t ionship i s  l inear .  Addition of hydrotropic s a l t s  (3)-i,e., 
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Figure 3. Solubility of  acrylonitr i le in  aqueous l i thium 

LiOH CONCENTRATION, WT. % 

hydroxide, and aqueous lithium hydroxide and 
sodium iodide (2.0 molal) a t  2 5 O C .  

s a l t s  which i n c r e a s e  t h e  so lubi l i ty  of organic  s o l u t e s  in 
water ,  such  a s  sodium iodide  or sodium benzoate-in- 
c r e a s e s  t h e  solubi l i ty  of acryloni t r i le  in the  sodium hydrox- 
ide  so lu t ions .  T h i s  i n c r e a s e  in solubi l i ty ,  however ,  ho lds  
only over a l imited range of sodium hydroxide concentra-  
t ions.  With sodium iodide,  t h e  hydrotropic e f fec t  p reva i l s  
up to  1.8% sodium hydroxide concentrat ion;  with sodium 
benzoate  t h e  e f fec t  e x t e n d s  to  6.5%. Above t h e s e  b a s e  
concent ra t ions  t h e  s a l t  e f fec t  becomes  addi t ive  and  t h e  
acryloni t r i le  i s  “ s a l t e d  out”  more rapidly than if only t h e  
b a s e  were present .  

T h e  hydrotropic e f fec t  of s e v e r a l  s a l t s  on t h e  so lubi l i ty  
of acryloni t r i le  in  water  c a n  b e  s e e n  from Figure  2. T h e  
solubi l i ty  of acryloni t r i le ,  given in molal uni ts ,  i s  plot ted 
a g a i n s t  t h e  weight  per  cent  of t h e  s a l t s  i n  t h e  aqueous  
solut ions.  Sodium chlor ide  i s  a l s o  shown,  to  i l lus t ra te  t h e  
sa l t ing  out effect. Of t h e  three  hydrotropic s a l t s  shown,  
t h e  mixed sodium xylene s u l f o n a t e s  a r e  t h e  most eff ica-  
cious. While t h e  da ta  for t h e  l a t t e r  compounds a r e  not  
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Figure 4. Solubility of acrylonitr i le in  aqueous potassium 
hydroxide, and aqueous potossium hydroxide and 

sodium iodide (2.0 mola l )  a t  25' C. 

shown here, they i n c r e a s e  t h e  solubi l i ty  of acryloni t r i le  in 
aqueous  sodium hydroxide, when t h e  s o h u m  hydroxide 
concent ra t ions  a r e  below 9%. 

Other s a l t s  which showed hydrotropic e f fec ts  with acrylo- 
ni t r i le  were potassium iodide,  sodium sa lyc i la te ,  and  
potassium thiocyanate .  No hydrotropic e f fec ts  were shown 
by the  sodium s a l t s  of 1,3,6-naphthalenetrisulfonic ac id ,  
'$ ,5-naphthalel l~disulfonic  ac id ,  and  su l fosa lyc i l ic  a c i d  
(data  not shown here). 

F igures  3 and 4 show t h e  solubi l i ty  of acryloni t r i le  in 
aqueous  lithium and potassium hydroxide, respec t ive ly ,  and 
in  t h e  s a m e  so lu t ions  made 2.0 molal with respec t  t o  
sodium iodide. In t h e  c a s e  of lithium hydroxide the  point 
a t  which t h e  hydrotropic effect  c e a s e s  to function i s  1.5%; 
in that  of potassium hydroxide t h e  corresponding point i s  a t  
0.4%. A comparison of t h e  solubi l i ty  of acryloni t r i le  in t h e  
three alkal i  hydroxides s h o w s  that  t h e  sa l t ing  out effect ,  
due t o  the  b a s e s  a lone,  i s  s t ronges t  with lithium hydroxide 
and  weakes t  with potassium hydroxide. T h i s  comparison i s  
valid, a l s o ,  when the  concent ra t ions  a r e  compared on a 
molality bas i s .  

A comparison of F i g u r e s  1 and 2 ind ica tes  that  t h e  
concentrat ion of sodium hyrdoxide a t  which hydrotropy 
c e a s e s  depends  on t h e  e f f icacy  of the  hydrotropic sa l t .  
T h i s  s u g g e s t s  tha t  t h e  greater  the  hydrotropic effect  of the  
s a l t  in water ,  t h e  greater  wil l  be  the  range of b a s e  con- 
centrat ion over which t h e  e f fec t  will prevail. 

F igure  5 d e p i c t s  t h e  ternary solubi l i ty  diagram of sodium 
iodide, water, and acryloni t r i le .  T h i s  sys tem w a s  invest i -  
gated with t h e  hope  tha t  i t  might shed  some l ight  on the  
mechanism by which t h e  increased  solubi l i ty  of acryloni- 
t r i le  w a s  obtained. Sodium iodide w a s  chosen a s  t h e  s a l t  
b e c a u s e  of i t s  ease of handl ing and the  s implici ty  of t h e  
hydrate diagram. L i n e  AC des igna tes  t h e  solubi l i ty  of 
acryloni t r i le  in water  with increas ing  sodium iodide con- 
centrat ions.  T h e  a rea  e n c l o s e d  by ACE and the  b a s e  
l i n e s  represents  a homogeneous solut ion of the  three  

components. L i n e  BC del inea tes  t h e  solubi l i ty  of sodium 
iodide in water  containing increas ing  amounts  of acryloni- 
trile. L i n e  DE d e l i n e a t e s  t h e  solubi l i ty  of water  in  acrylo- 
ni t r i le  with increas ing  sodium iodide content  of t h e  organic  
phase.  L i n e  EF s h o w s  the  solubi l i ty  of sodium iodide in 
acryloni t r i le  containing varying amounts  of water. 

An ini t ia l  composition fal l ing in  t h e  a rea  E-F-sodium 
iodide ver tex s e p a r a t e s  in to  two phases :  a so l id  sodium 
iodide p h a s e  and a n  acryloni t r i le  p h a s e  sa tura ted  with 
sodium iodide. An ini t ia l  composition fal l ing in the  a rea  
E-C-G-sodium iodide s e p a r a t e s  into three p h a s e s  con- 
s i s t i n g  of NaI or NaI.H,O, a n  aqueous  p h a s e  of composi- 
tion C, and an organic  p h a s e  of composition E. T h e  posi- 
tion of t h e  p h a s e  t ransi t ion between anhydrous sodium 
iodide and i t s  monohydrate w a s  not determined b e c a u s e  of 
the  experimental d i f f icu l t ies  involved. However, when 
acryloni t r i le  w a s  added  to  a mixture of sodium iodide and  
water  having a composi t ion ly ing  along segment  BG, t h e  
f i rs t  appearance  of an organic  p h a s e  occurred a t  a composi- 
tion lying on l i n e  GC; t h i s  i n d i c a t e s  that  sa tura ted  aqueous  
so lu t ions  of composition EC a r e  i n  equilibrium with 
NaI.H,O d e s p i t e  t h e  p r e s e n c e  of acryloni t r i le  in  t h e  aque- 
ous phase.  

P h a s e  boundaries AC and DE show tha t  acryloni t r i le  i s  
s a l t e d  into water  due  to t h e  presence  of sodium iodide,  but  
that  water  i s  s a l t e d  out of acryloni t r i le  by t h e  presence  of 
sodium iodide. 

CONCLUSIONS 
T h e  solubi l i ty  of acryloni t r i le  in water  i s  decreased  by 

the  p r e s e n c e  of a lka l i  b a s e s .  T h i s  lower solubi l i ty  c a n  
be  compensated for in  d i lu te  b a s e  so lu t ions  by t h e  addi t ion 
of hydrotropic s a l t s ,  s u c h  a s  sodium iodide, sodium benzo- 
a te ,  and sodium xylenesulfonate .  

T h e  range of b a s e  concent ra t ions  over which a given 
hydrotropic s a l t  can  exer t  i t s  inf luence appears  to  b e  
proportional t o  i t s  hydrotropic e f fec t iveness  in  the  a b s e n c e  
of t h e  base .  

There  a p p e a r s  t o  b e  no def in i te  method for predict ing 
whether or not a given s a l t  will h a v e  hydrotropic effect  on 
so lu t ions  of acryloni t r i le ,  However, a smal l  but  f in i te  
solubi l i ty  of t h e  s a l t  i n  acryloni t r i le  appears  t o  b e  required. 
T h e  converse  of t h i s  s ta tement  i s  not necessar i ly  true: 
Dioxane i s  so luble  in acryloni t r i le ,  but i t s  addi t ion,  in  

Figure  5. Ternary solubility diagram of sodium iodide, water, 
and acrylonitr i le a t  25 C., weight per cent 
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amounts  up to lo%, to a s a t u r a t e d  a q u e o u s  so lu t ion  of 
acryloni t r i le  will c a u s e  t h e  separa t ion  of an acryloni t r i le  
phase .  
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Viscosities of Fluorinated Methyl Bromides and Chlorides 

JOHN F. REED AND B. S. RABINOVITCH 
Department of Chemistry, Loyola University, Chicago, Ill., and 
Department of Chemistry, University of Washington, Seattle, Wash. 

I n  s tudying t h e  chemica l  reac t ions  of t h e  f luorinated 
methyl ch lor ides  and bromides with sodium vapor, i t  w a s  
n e c e s s a r y  t o  obta in  t h e  v i s c o s i t i e s  of t h e s e  ha l ides .  Very 
few d a t a  on  t h e  v i s c o s i t i e s  of t h e s e  compounds a r e  re- 
corded;  t h e  v a l u e s  that  e x i s t  h a v e  been  obtained by inde- 
pendent  measurements  and provide no opportunity for inter-  
nal  comparison or cons is tency .  

EXPERIMENTAL 
T h e  f luorinated chloro compounds were obta ined  from 

t h e  Kine t ic  C h e m i c a l s  Divis ion,  E. I. d u  Pont  d e  Nemours 
b Co. Methyl ch lor ide  and  bromide were Eas tman Kodak 
white  labe l  products .  T h e  f luorinated bromo compounds 
were a l l  s y n t h e s i z e d  by us ing  t h e  Hunsdiecker  degradat ion 
of t h e  s i lver  or sodium s a l t  of t h e  corresponding carboxyl ic  
ac id  by bromine. All compounds were d i s t i l l e d  s e v e r a l  
t imes  on a low temperature  f ract ionat ing column and only 
t h e  middle f rac t ions  of cons tan t  boi l ing range  were e m -  
ployed. M a s s  s p e c t r a l  pa t te rns  were  obtained for a l l  com- 
pounds and showed t h e  a b s e n c e  of apprec iab le  impuri t ies .  

T h e  coeff ic ient  of v iscos i ty  w a s  determined by al lowing 
t h e  spec imen g a s  to flow from a 2-liter bulb through a uni- 
form g l a s s  capi l la ry  a t  room temperature  into a n  evacuated  
boros i l ica te  g l a s s  t rap  refr igerated by l iquid nitrogen. T h e  
in i t ia l  and f inal  p r e s s u r e s  in  t h e  bulb were measured,  a s  
wel l  as  t h e  e l a p s e d  time. T h e  co l lec ted  c o n d e n s a t e  w a s  
t ransferred to  a tared evacuated  g a s  bulb and weighed. 
Samples  were 100 t o  300 mg. and required co l lec t ion  t imes  
were 1 to 3 hours .  T h e  p r e s s u r e s  in t h e  la rge  bufb were 2 
to  15 cm. and no  correct ion for s l i p  w a s  n e c e s s a r y .  T h r e e  
to  s e v e n  de termina t ions  were  made on e a c h  sample.  T h e  
maximum error w a s  in t h e  weighing, which had a precis ion 
within 1%. 

RESULTS 
T h e  procedure w a s  ca l ibra ted  u s i n g  methyl chloride, for 

which t h e  v a l u e  of t h e  absolu te  v iscos i ty  of Renning and 
Markwood ( 1 )  w a s  adopted.  Al l  measurements  were ad- 
jus ted  to  2 5  o C., us ing  temperature  coef f ic ien ts  of 0.3 and 
0.6 micropoise  per  degree  for t h e  ch lor ides  and bromides,  
respec t ive ly ,  b a s e d  on t h e  methyl compounds. T h e s e  cor- 
rec t ions  were of t h e  order  of magnitude of t h e  probable  
error of a s i n g l e  measurement. T h e  r e s u l t s  a r e  given in  
T a b l e  I,  with l i t e ra ture  va lues .  

Table  I. V i s c o s i t i e s  and Molecular Diameters of G a s e s  

Compound 

CH,C1 
CFH,Cl 
CF,HCl 
CF,Cl 
CHSBr 
CFH,Br 
CF,HBr 
CF,Br 

77,  Exptl.  (25°C.) ,a  
Micropoises 

[ 107.9 (0. l)] 
113.1 (0 .7)  

139.6 (0.7) 
134.8 ( 0 . 1 )  
129.1 (0.4) 
140.4 (0.1) 
151.2 (0 .2)  

... 

n Lit.  (25  ‘C.), 
Micropoises Diameter, A. 

107.9 (1) 5.55  ... 5.85 
129.2 ( I )  5.81 ... 5.85 
135.2 (2) 5 . 8  1 

... 6.10 ... 6-18  ... 6.15  
=Probable error of average g iven in parentheses.  

DI SCUSSl ON 
T h e  coeff ic ient  of v iscos i ty  i n c r e a s e s  gradual ly  with 

i n c r e a s e  in t h e  number of f luorine a toms in the  molecule  
for t h e  ch lor ides ,  although a minimum occurs  in  t h e  bromide 
s e r i e s ,  T h i s  may b e  cons idered  a consequence  of t h e  rela- 
t ive  i n c r e a s e  in  molecular  m a s s  and molecular  diameter, on 
p a s s i n g  down t h e  two ser ies .  

In view of t h e  general  lack of t ransport  quant i t ies  of 
g a s e s ,  o n e  or more of t h e s e  quant i t ies  must often b e  e s t i -  
mated. When insuff ic ient  d a t a  a r e  ava i lab le  for cor re la t ions  
b a s e d  on s t ructural  fea tures ,  t h e  k ine t ic  theory of g a s e s  i s  
often used .  However, even  in t h e  la t te r  c a s e ,  a s t ructural  
parameter, s u c h  a s  a co l l i s ion  diameter ,  i s  necessary .  T h e  
co l l i s ion  diameter  of each  of t h e s e  molecules  w a s  calcu-  
la ted from t h e  v iscos i ty  coeff ic ient  on t h e  b a s i s  of t h e  
hard, e l a s t i c  sphere  approximation ( T a b l e  I). Subst i tut ion 
of o n e  f luorine atom in t h e  molecule  r e s u l t s  in an i n c r e a s e  
in diameter ,  and s u c c e s s i v e  subs t i tu t ions  of fluorine c a u s e  
no further increment .  T h i s  behavior  i s  cons is ten t  with t h e  
view of the  s imple ,  hard s p h e r e  model. 
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